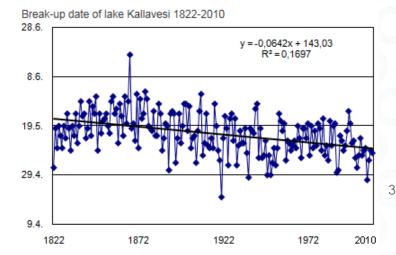
Basic environmental monitoring

Juha Riihimäki Finnish Environment Institute SYKE TJK Water Quality II, Study tour, 21.11.2022

OUTLINE

SYKE


History

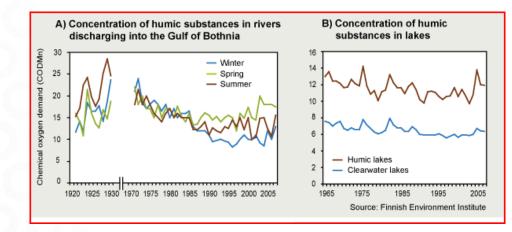
- The status of Finnish waters
- Why do we monitor?
- How do we monitor?
- What are the challenges in our system?
- What will we do in the near future?

Hydrological monitoring

- Hydrological monitoring of water flows and levels is a basis and oldest part of monitoring
- Great benefits for flood protection, water borne traffic and irrigation
- Hydropower production needs exact information of water flows and levels
- Important data for national and international use
- => essential for climate change scenarios

Freezing date of Lake Kallavesi 1833-2009 3.2. 14.1. 25.12. 5.12. 15.11. 26.10. 1833 1883 1933 1983 2010

National hydrological monitoring programme 2018

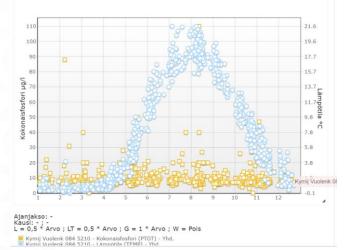

	Observation network	Number of stations/sites			
		SYKE/ELY	Others	Total	
	Hydrometeorology precipitation	-	240	240	
	snow water equivalent	142	-	142	
	evaporation (Class A)	5	-	5	
	Surface waters water level	376	290	666	
	river discharge	189	205	394	
	ice thickness	51	-	51	
	water temperature	34	-	34	
	runoff/small basins	35	-	35	
	Geohydrology				
	groundwater level	90	-	90	
SYKE	groundfrost depth	38	-	38	

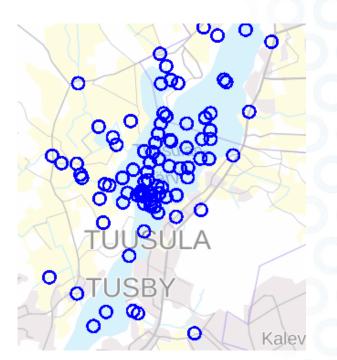
Water (physico-chemical) quality monitoring -long time series

- Standardized field and laboratory procedures
 - Comparability

SYKE

- Regular system since early 70's
 - Quick and easy to establish




Water quality data system (VESLA)

- Monitoring sites tot. 70 085
 Lakes 37 117
 Rivers 27 308
 - Sea areas 5660
- Analysis results

SYKE

28 850 228

Measured water quality parameters

General parameters

- temperature
- oxygen (mg/l, %)
 conductivity (mS/m)
- turbidity (FTU)color (mg/l Pt)
- •COD_{Mn} (mg/l)

Eutrophy

total P, total N,
NO₂+NO₃-N, NH₄-N, PO₄-P
chlorophyll *a*

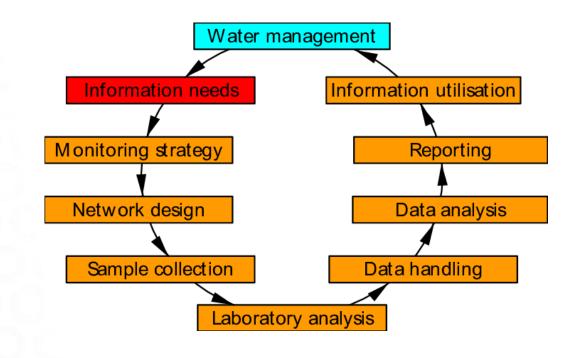
Acidity

pH, alkalinity

Metals

Fe, Mn, K, Ca, Mg, Na

Why do we monitor?


Environmental monitoring

- Systematic studies that observe the state of the environment.
- Systems based on
 - Environmental objectives and legislation
- The purpose
 - To assess the progress in environmental objectives
 - To detect new environmental issues.

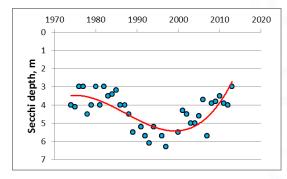
Water monitoring and management –joint continuous circle

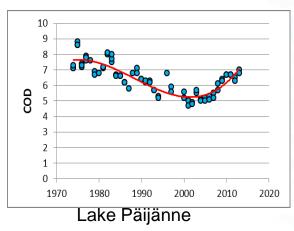
SYKE

Types of the surface water monitoring

• Surveillance monitoring

- To provide information of long term changes
- To supplement and validate the impact assessment
- Operational monitoring
 - In waterbodies under environmental pressure
 - At risk of failing to meet the environmental objectives.
- Investigative monitoring
 - Cause and effect relationships

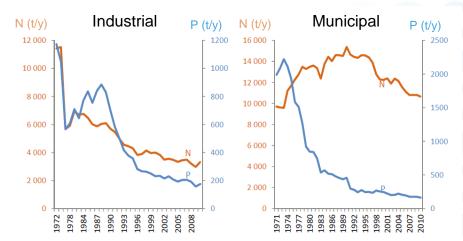

Surveillance (basic) monitoring


Information on long term changes

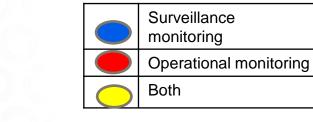
- Hydrological trends
- Water quality in lakes, rivers & coastal areas

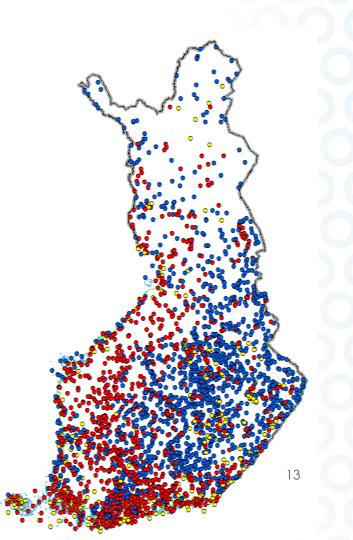
Impact assessment

• Reference conditions



Operational monitoring – Largely obligations to polluters

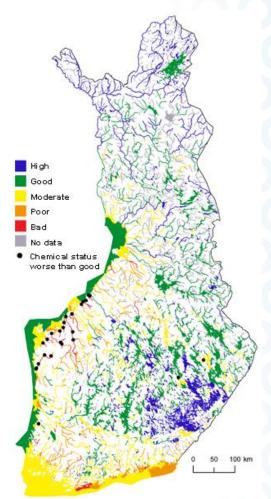

- Waterbodies under human pressure
 - Industrial wastewaters
 - Municipal wastewaters
 - Diffuse loading from agriculture / forestry
- Obligations in environmental permits
 - Environmental monitoring and reporting
 - Collaborative measures
 - 80% of all surface water monitoring



Number of water bodies and monitoring stations

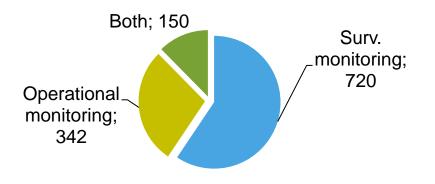
Surface water category	WFD re	porting 2016	
	sites	water bodies	
Lakes	1637	4714	
Rivers	962	2028	
Coastal	259	276	
Total	2858	7018	

SYKE


Monitoring Frequency

- The monitoring frequency is either annual (4 12 times a year for water quality) or every three, six or 12 years (biological quality elements)
- Monitoring programs and monitoring network are guided by MoE and prepared by local ELY centers with help from SYKE
- Sampling and analysis is outsourced to private companies and laboratories. Data is transferred to SYKE databases online with transfer files.

Ecological status of the Finnish surface waters


Ecological status	Rivers	Lakes	Coastal waters
High or Good	52%	87%	36%
Moderate, Poor or Bad	48%	13%	64%

Monitoring now

- Rivers 437
- Lakes 775
- Contradiction
 - Ministry of finance => monitoring too expensive
 - EU => too few sites
- Result by now
 - monitoring reduced over 20%

Water monitoring –what will hapen -new methods and innovations

- Traditional sampling has been and is decreasing
- There will be more new monitoring technologies available
- Crowdsourcing (for example using phone technologies coupled with water quality testing) fits to some specific interesting aims

Remote Sensing (satellites), smart buoys, drones, automatic sensor stations passenger/cargo ships with measuring sensors

